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Interfacial conditions for a cylindrical vortex sheet or a cylindrical fluid layer with 
radius-dependent density, velocity and magnetic fields are derived for isentropic 
compressible swirling flows subjected to arbitrary disturbances. Surface tension is 
included for possible immiscible fluids. These conditions are valid for both spatially 
and temporally growing waves and for flow profiles with or without discontinuities. 
The deformation of the sheet or the layer affects the flow in two ways: perturbing 
the total pressure field and disturbing the centrifugal force field created by the 
azimuthal components of the velocity and the magnetic flux. The latter seems to be 
straightforward, but is easily overlooked as in some of the previous analyses. We will 
show that failure to consider such a perturbation t o  a stable centrifugal force field 
will lead to the improper destabilization of certain modes with smaller axial and 
azimuthal wavenumbers. 

The interfacial conditions and their corresponding stability characteristics are 
further examined for a general class of incompressible flows subject to temporal 
perturbations. Unlike the single role of destabilization played by the velocity in 
two-dimensional stratified flows or axisymmetric jet flows, the rotating velocity in 
vortex motions plays a dual role in flow stability : the angular-velocity gradient 
generates tangential shear, and the angular velocity itself creates a centrifugal force 
field. While the former always destabilizes the flow, the latter can either stabilize or 
destabilize the flow depending on whether the resultant force is centrifugally stable 
or unstable. These characteristics are demonstrated by examining three general types 
of perturbations. 

1. Introduction 
I n  a paper by Rotunno (1978), the uncertainties of the stability analysis for an 

incompressible cylindrical vortex sheet in a homogeneous inviscid fluid were again 
discussed. Using a potential formulation for both vorticity-free regions inside and 
outside the vortex sheet, he resolved the inconsistency in an earlier analysis by 
Michalke & Timme (1967) and recovered the first two otherwise stable modes. A later 
analysis by Leibovich (1969) on stability of inviscid rotating coaxial jets in stratified 
fluids revealed similar uncertainties arising from the perturbations to flows with 
discontinuity profiles. The author found that the stability characteristics uncovered 
were anomalous and concluded that errors might result if a thin but stable layer was 
replaced by a vortex sheet. The purpose of this paper is to investigate some 
uncertainties of the stability analysis for flows with discontinuity profiles and to 
present an overall view for flows of this type. The flow to be considered is isentropic 
and has general radius-dependent profiles for the density, velocity and magnetic 
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fields. All dissipative effects are disregarded. Surface tension is also included for the 
case of immiscible fluids. 

Even though many criteria have been derived (e.g. Howard & Gupta 1962; Fung 
& Kurzweg 1975; Lalas 1975; Fung 1982) for general vortex flows to provide us with 
some upper-bound information on stability or instability, criteria for flows of this kind 
do not yield sufficient knowledge of instabilities, if any, for a given flow profile. 
Solutions to the governing stability equations must be obtained before the detailed 
instability characteristics for a particular flow profile can be observed. Unfortunately, 
analytical solutions in terms of well-known functions for general vortex flows are very 
difficult to obtain except for a few broken-line profiles. Matching the solutions a t  the 
common boundary between two flow regions therefore becomes the trick for the 
analysis of this type (e.g. Michalke & Timme 1967; Leibovich 1969; Lessen, 
Deshpande & Hadji-Ohanes 1973). In  matching those broken-line profiles, appropriate 
interfacial conditions must be used. 

In  the present analysis, we will show from the derivation of the interfacial 
conditions that perturbations to the flow disturb both the pressure field and the 
centrifugal force field. The latter, created by the fluid rotation and the azimuthal 
magnetic field, stabilizes or destabilizes the flow depending on whether the force field 
generated is centrifugally stable or unstable. The perturbation to the centrifugal force 
field is essential to the flow characteristics especially when rapid changes of flow 
quantities exist within a thin layer of fluid. Such a perturbation to the centrifugal 
force field seems to be straightforward, but is sometimes easily overlooked. 

When discontinuities of flow quantities exist in a cylindrical interface, instabilities 
are likely to occur because of the sharp velocity gradient and any unbalanced 
centrifugal forces present at the interface. The rotation of fluid particles plays a dual 
role in flow characteristics. Though the angular velocity gradient generates shear 
effects which always destabilize the flow, the angular velocity itself induces cen- 
trifugal forces which can either stabilize or destabilize the flows, depending on 
whether the force field induced is centrifugally stable or unstable. This phenomenon 
will be demonstrated by examining a general class of vortex-sheet-type flows. The 
stabilizing or destabilizing effect of the centrifugal force field will be revealed by the 
perturbation of the field a t  the interface. A centrifugally stable force field created 
by the rotation and the azimuthal magnetic field may not always offset the shear 
instability of the vortex sheet, but certainly will stabilize disturbances corresponding 
to longer wavelengths. 

2. Governing equations for normal modes 
Consider a swirling flow with a velocity U to be confined within the annular region 

( r ,  3, z )  between two rigid, infinite and coaxial cylinders in the presence of a magnetic 
field H. The fluid having an inhomogeneous density p* is assumed to be compressible 
but non-heat-conducting. In  the absence of gravitational forces and dissipation effects 
due t o  viscosity, magnetic resistivity and thermal diffusivity, the governing equations 
for the isentropic motion of the flow are 

p*- DU = VQ+ -((H*V) P H. 
Dt 4a 

DP* 
~ +p*v- u = 0, 
Dt 

aH 
- at = v x (UX H), (3) 
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Q * H =  0, (4) 

DP Dp* 
- = a2- 
Dt Dt ’ 

where p denotes the magnetic permeability. The total pressure Q (including the 
magnetic pressure) is related to the hydrodynamic pressure P as follows : 

P 
47c 

Q = P+ - lw2. 
The velocity of sound for an isentropic process is given by 

a2 = (”> 
a ~ *  isentropic 

For given velocity and magnetic fields only one of the thermodynamic variables can 
be independently prescribed. The boundary conditions for the system governed by 
(1)-(5) are those of perfectly conducting rigid walls. 

The flow to be considered has a steady-state, radius-dependent profile: V,(r) is the 
azimuthal velocity, Wo(r) the axial velocity, &(r) the azimuthal magnetic field, H,(r)  
the axial magnetic field, Qo(r)  the total pressure, po(r) the density and ao(r) the sound 
speed. Let the flow be perturbed as follows : 

I U =  V[d, V,(r)+@, W o ( r ) + f i ] ,  

H = f@,, H&) + L o ,  H,(r)  + &I, 
Q = Qo(r) + @ ?  

P* = P O P )  + A  
a = ao(r) + &. 

We further introduce the periodic solutions 

(7)  

4 = q3(r)exp[i(kz+mB-wt)], (8) 

such that the azimuthal wavenumber m is an integer, and the axial wavenumber k 
and the circular frequency w are both complex in order to admit solutions for both 
spatially and temporally growing disturbances. Within the framework of the 
normal-mode approach, the linearized equations for the flow described by (1)-(5), 
subject to small perturbations, are given as follows: 

(9) 
i k2 + m2/r2 G 

= 
N A  v* (’ - g) D* (G) - (’ - YE) (g) ,372 

1 T {( 1 - g) [ ( N 2 -  @) - ( N i  - !PA) + - (1 -rn2 - k2R2) S(r-R) 
Po R2 

r2 N2 

- i [ (1 - $$) Dq + Nr2 
Po 
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where 

and N = k Wo + m V,/r - o is the Doppler-shifted frequency, N A  = k WA + mVJr 
the Alfvkn frequency, V, = (p/4xpo)s H ,  the azimuthal Alfven velocity, 
JVA = (,u/4xp0): H,  the axial Alfvkn velocity, D = d/dr, D* = D + l / r  and 
D, = D- l / r .  The surface-tension effect for possible immiscible fluids is introduced 
in (lo), with T rcpresenting the surface-tension coefficient, 6(r -R)  the Dirac delta 
function, and R the radial position for a cylindrical vortex sheet or a cylindrical fluid 
layer. The Rayleigh-Synge discriminant is defined as 

Db0(r5)21 
Po r3 

c p =  

and the A1fvi.n discriminant as 

The boundary condition for (9) and (10) is that  u vanishes a t  the inner and outer 
boundaries. The two discriminants play a crucial role in the flow stability. For 
incompressible flows subject to axisymmetric disturbances and with all the axial 
influence in the velocity and magnetic field suppressed, they constitute a necessary 
and sufficient condition for stability, i.e. 

@-!If, 2 0. (11) 

The above criterion can be easily obtained from (9) and (lo),  and will be called the 
generalized Michael condition (Michael 1954). 

Assuming that a vortex sheet or a fluid layer in its steady state is located a t  r = R 
with possible discontinuities in all components of the density, velocity and magnetic 
fields, one can integrate (9) and (10) across the vortex sheet to obtain the kinematic 
and dynamic interfacial conditions : 

(;) = 0, 

1 T 
< 9 > - i ( ~ ) , [ ( p o ( ~  - F)) + p ( k 2 R 2 + ~ m 2 - - 1 )  = 0, 

where ($) = $(R+o)-$(R-o) denotes a possible jump condition a t  the interface. 
Equation (12) simply states the well-known fact that  the Lagrangian displacement 
should be continuous across the interface. Equation (13) points out that  the dynamic 
interfacial condition should include not only the perturbations to  the surface tension 
and the total pressure field, but also the perturbations to  the centrifugal force field 
resulting from the velocity and Alfvkn waves in the azimuthal direction. The jump 
condition arising from the latter perturbations is the outcome of integrating the 
Rayleigh-Synge and the Alfv6n discriminants across the interface. This outcome, 
supported by the analysis to be given later, implies that  the generalized Michael 
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condition is a differential representation of a stable centrifugal force field. Com- 
pressibility effects do not explicitly enter into either of the interfacial conditions. 
This characteristic can be seen from an alternative derivation of both conditions in 
the following section. 

3. Physical considerations 

disturbed such that the deformed interface is prescribed by 
Assume that the cylindrical vortex sheet located at the radial position R is 

r = R + f ( r , O , z ; t ) ,  (14) 

where R + $. Taking the total derivative of (14) and assuming periodic solutions yield 

Equation (12) immediately follows if no gap is allowed to exist a t  the disturbed 
interface. 

The dynamic interfacial condition can also be obtained by examining the Euler 
equation of motion. In the presence of surface-tension effects, the steady-state form 
of ( 1 )  in the radial direction yields 

DQ, =Po(: - F) - z8(r -R) .  T 

The steady-state total pressures inside and outside the vortex sheet are respectively 

where the subscripts 1 and 2 denote respectively the quantities prescribed in the inner 
and outer regions separated by the vortex sheet, and R, is a reference radial location 
in the inner region. Let the vortex sheet be perturbed according to (14). The total 
pressure should be balanced at the perturbed interface, i.e. 

where R,, and R,, are the principal curvatures of the disturbed surface. Subtracting 
(17) and (18) from (19) and assuming that all the quantities in the mean flow are 
bounded and continuous in the interval [R, R+$, we obtain the first-order pertur- 
bation condition for dynamical balance at  the undeformed interface as follows : 

<d>+ [(p,(: - F)) +T(g + 
The dynamic interfacial condition (13) derived by the normal-mode analysis is 
recovered if periodic solutions for the perturbation quantities are assumed once again. 

As shown in figure 1, the mathematical steps adopted to derive (20) from (19) 
simply demonstrate a dissolution of the total pressure force acting at  the disturbed 
surface of the vortex sheet (figure l a )  into the individual force components acting 
at the steady-state interface (figure 1 b ) .  As a matter of fact, (20) can also be reached 
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(a ) ( b  1 

FIGURE 1. Dissolution of the total force into the force components at the interface. 

simply by balancing all the force components acting at a differential element 
t(R) R dB (per unit axial wavelength) that  experiences the centripetal acceleration 
induced by the angular velocity and magnetic flux. This procedure of force decom- 
position demonstrates that the deformation of the interface affects the flow in two 
ways : perturbing the pressure field (including the magnetic pressure) and disturbing 
the centrifugal force field (generated by the azimuthal velocity and magnetic flux). 

The derivation just given clearly shows that (15) and (20) are respectively purely 
kinematic and dynamic conditions. They are therefore valid for both compressible 
and incompressible flows, and accordingly, compressibility effects do not explicitly 
enter conditions (12) and (13) derived in $2. 

4. A general class of vortex sheets 
The centrifugal force enters the dynamic interfacial condition through its interaction 

with the Lagrangian displacement in the r-direction. The interaction represents the 
influence on flow stability due to the perturbation to the centrifugal force field. To 
understand such an influence, we will analyse a general class of vortex sheets subject 
to different perturbations. For simplicity, the perturbations are restricted to  be 
temporal, i.e. the axial wavenumber k is real while the frequency w = w,+iwi is 
complex. Compressibility effects are ignored. The governing stability equations 
reduced from (9) and (10) under the present assumptions are given as 

where = Ti/r is the angular velocity and 0, = vA/r is the Alfvkn angular velocity. 
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For the convenience of mathematical operations and discussion, we define 

T 
R 

F, = ( p o r ( Q 2 - S Z i ) ) +  - ( K 2 + m 2 - 1 ) ,  

with K = kR.  The interfacial condition (13), now written as 

can then be viewed as the dynamical balance condition between the perturbation of 
the total pressure (including the magnetic pressure) and the perturbation of the 
unbalanced centrifugal forces and surface tension at  the interface. 

The general class of vortex-sheet profiles to  be considered has two flow regions with 
their steady-state interface located a t  r = R .  The flow properties in the inner region 
are 

where the quantities with numerical indices are constant. The flow properties in the 
outer region are arbitrary functions of the radius. By applying the boundary 
condition a t  the axis the solution for the perturbation velocity u1 in the inner region 
can be obtained from (21)  and (22)  as 

where 

N ,  = kW,+mQ,-w, 

NAi = k WAi + mQAi, 

and Im(kg, r )  is the modified Bessel function of the first kind. The prime denotes the 
total derivative with respect to  the argument of the Bessel function. The solution 
in the inner region will be used to analyse the influence of the centrifugal force 
field on flow stability subject to three kinds of disturbance a t  the interface: an 
axisymmetric perturbation, an azimuthal perturbation, and an arbitrary 
perturbation. 

Case 1 : the azisymmetric mode (m = 0) 

The solution in the inner region as described by (26)  for the axisymmetric case reduces 
to 

where 
~1 = A N ,  kgi G(kgi r ) ,  (27)  

Nl  = kWl-w ,  

Ni  Q i - k  W A ~  Q A ~  g l =  1 - 4  { ( N 2 - k 2 K l  

For the convenience of mathematical operations, we will express the dynamical 
interfacial condition only in terms of the perturbation velocity. To do this, we 
substitute (21)  into (24)  for m = 0 and obtain 

( p o r 2 ( N 2 - k 2 W 2  A )  D* (G)) - + K 2 ( G ) F c = 0 -  
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axisymmetric mode reduces to the form 
The governing stability equation obtained by combining (21)  and (22) for the 

D[po(lP-k2W~)D*(~)]-pok2[(N2-k2W~)g2+4D2-@+ F A ]  

where 

Multiplying (29) by r ( u / r ) ,  where the quantities with a bar represent the complex 
conjugates, and integrating the resultant equation over the outer region, we obtain, 
after combining (27) with (28) and applying the boundary condition at infinity, the 
following integral equation : 

k2K&(K&) @I91 J o ( K 9 1 )  (N:--2Wi1)-KG(K91) FR)  
m3 rm 

Here the transformation $, = ( l / A g , )  u / N  has been applied for R < r < a. 
To observe the effects of the centrifugal force field and other flow quantities on 

the stability of the flow and especially of the interface, the following special profiles 
are considered to simplify the integral equation (30) .  Let 52, = 0 in the inner region 
and W A  = 0 throughout the entire flow field. After some mathematical manipulations, 
we have found that the flow under the present assumptions will be stable when 

where 
Olk = k2p1 K&(K) I o ( K )  2 0,  

x, = po(ID*$,12 f k21$k12) r 2 0, 

8, = Xkdr W2Xkdr- WX,dr . s s  (s l2 
The first and second pairs of curly brackets in (31) respectively contain information 
on the axial velocities and on the centrifugal forces. Since both a, and X, are 
positive-definite, the first integral in the first pair of curly brackets represents the 
axial-velocity difference at  the interface, always destabilizing the flow. The second 
term in the brackets contains information on the axial velocity in the outer region. 
From the Schwarz inequality that S, 2 0 for all values of W ,  we can conclude that 
the presence of the axial velocity in the outer region always destabilizes the flow 
except for constant values of axial flows where 8, = 0. The tangential shears a t  the 
interface and in the outer region are suppressed since the perturbations are only 
axisymmetric. The first term in the second pair of curly brackets is the integral of 
the Rayleigh-Synge and the Alfvkn discriminants. For vortex flows subject to 
axisymmetric disturbances and in the absence of the axial velocity and the axial 
magnetic field, the two discriminants constitute the generalized Michael condition to 
represent a state of centrifugal stability as described in ( 1 1 ) .  The corresponding 
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integral in the curly brackets therefore conveys information on centrifugal stability 
in the outer region. The last term in the second pair of curly brackets carries the 
information on the centrifugal forces acting on both sides of the interface, parallel 
to the first term in the same brackets. As pointed out in the derivation of the dynamic 
interfacial condition in (13), the jump condition arising from the perturbation of the 
centrifugal force field is the outcome of integrating the Rayleigh-Synge and the 
Alfv6n discriminants across the interface. The last term in the brackets can then be 
viewed as the integral representation of the generalized Michael condition at the 
interface. The sign of F,, indicating whether or not the resultant force at the interface 
is centrifugally stable, determines the stabilizing or destabilizing effect on the flow. 
I n  the present case 

(32 )  
T 

F = R[p,O~-(p,O~,-p,52~,)1+ j$+-1). 

The surface tension always stabilizes the flow except for very long axial wavelengths 
where K < 1. The presence of the magnetic field in the inner region stabilizes the flow 
while that in the outer region destabilizes the flow. The rotational velocity immediately 
outside the sheet always stabilizes the flow. 

It should be pointed out that the flow profile being considered in this axisymmetric 
case can be reduced to the one examined by Leibovich (1969) if the axial flow in the 
outer region and all the magnetic forces in the flow field are deleted. Equations (31) 
with W = YA = 0 should have been recovered had the correct interfacial condition 
described by (24) been used in his paper. To re-evaluate his conclusions, we follow 
the same procedures in his paper and discover that the flow will be stable if the 
following two conditions are met: 

, (33) 
'k + 

Lyk dr a,+ I Xkdr I j PO(@- yA) l$k12rdr+ [K1h(K)12 Fc 2 ak 

pO[(@-yA)-k2(w-K)21 l#klzrdr+[K1h(K)12Fc 

2 j (W-@)2polD*#k(2rdr+ . (34) 
a,+ Xkdr 

Both (33) and (34) reduce to the generalized Michael condition in the outer region 
and a t  the interface if no axial velocity gradient exists throughout the flow field. A 
conclusion that the flow will be unstable for large k could immediately be drawn from 
the above two equations if F, were neglected regardless of the centrifugal-force 
balance condition a t  the interface. Such a negligence led him to conclude that the 
flow must be unstable a t  least to short waves and possibly to all wavelengths. While 
flows of the vortex-sheet type are susceptible to short-wave perturbations because 
of the strong shear effect present a t  the interface, the centrifugal force jump as in 
the case investigated by Leibovich (1979) will certainly stabilize those perturbations 
with longer wavelengths. This characteristic is clearly shown in (31) and will be 
supported by an  exact solution to be given in the following. 

Because of the presence of the centrifugal term involving F, in (31), instabilities 
for large axial wavenumber cannot immediately be concluded. Therefore i t  is 
necessary to obtain solutions for some specific flow profiles in the outer region before 
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FIQURE 2. Stability domains for flows subject to axisymmetric perturbations. 

the detailed stability phenomenon can be observed. We will examine the following 
flow profile: 

Po(r) = P2, W ( r )  = w2, 1 
( R  < < co), (35) 

Q ( r )  = &(R/r)', Q A ( ~ )  = j 
where pz,  W,, Q,, and QA2 are constants. The perturbation velocity u2 in the outer 
region obtained by solving (29) is 

u2 = B(kW2-w) kKi(kr) .  

The stability boundary described by (31) in this case is 

where Fc is given in (32). Since the sum of the terms within the square brackets are 
positive, the stabilizing effect, if any, will come from the centrifugal force term F,. 
Even though (36) may still be violated for very large wavenumbers, perturbations 
corresponding to  smaller axial wavenumbers will certainly be stabilized by the 
centrifugally stable forces at the interface. As demonstrated by (36), an erroneous 
conclusion that no axisymmetric modes are stable can easily be reached if the 
perturbation of the centrifugal force a t  the interface is omitted. Figure 2 shows such 
stability domains for the ratio between the centrifugal-force and the axial-velocity 
difference as a function of the axial wavenumber. The centrifugal-force jump at the 
interface does stabilize perturbations with smaller axial wavenumbers. 

Case 2 : the azimuthal mode (k = 0)  

The solutions in the inner region governed by (26) for azimuthal modes have the forms 

where 
u1 = AN,  rrn-l, 

Nl  = mQ,-w,  

(37) 
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and m will be treated as a positive integer. We will again express the dynamic 
interfacial condition only in terms of the perturbation velocity. Combining (21) and 
(24) for k: = 0 yields 

{ - (2nzrpo(~52-m52i ) )+m2~,}  = 0. (38) 

As for the outer region, the governing equation obtained from (21) and (22) for 
azimuthal modes is 

D[p,r2(Nz-mZRz A )  D* (31 - 

Following the procedures used in case 1 ,  we can easily conclude that again the sign 
of F, determines the stabilizing or destabilizing effect on the flow. In  the present case 

T 
F, = m ( P 2  52: - Pl 523 - (Pz Q i 2  -P1 aid1 + @ (mZ - 1 ), (40) 

represents the balanced or unbalanced force at the interface. The stability condition 
for this azimuthal case is found to  be 

z , + x ~ + x ~  2 0,  

x1 = - { ( m - l ) p l ~ ( 5 2 - 0 , ) z  Ymdr+Sm 
where 

s 1  T 
( m 2 - 1 ) ~ + ( m - 1 ) p 1 5 2 ~ , $  52iXmdr , 

S m =  Ymdr Q2Y,dr- s s  
The roles played by the flow quantities on the stability mechanism can be observed 
by examining (41). Again from the Schwarz inequality that S, 2 0 for all values of 
52, the terms in tl in (41) always destabilize the flow. Furthermore, by comparing 
the terms in x1 with those in the first pair of curly brackets in (31), we can draw an 
analogy between the two and conclude that they both convey shear effects which 
destabilize the flow. The difference is that  the shear effect in the present case is 
generated by the angular-velocity gradient rather than the axial-velocity gradient. 
The term xz is the contribution to  stability by the density variation in the centrifugal 
force field. Obviously the stabilizing or destabilizing effect depends on the density 
difference at the interface and on the density distribution in the outer region. 
Densities that increase with radius always stabilize the flow and vice versa, as one 
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FIGURE 3 ( a ,  b ) .  For caption see facing page. 
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FIGURE 3. Stability domains for flows subject to m = 2 (a), 5 ( b )  and 30(c) azimuthal perturbations: 
-, QAl=52A2=0;  --- , QA1/Q1 =0 .5 ;  - - - -  , QA1 = 0, 52,,/52, = 0.5; -.-.-, 
QA,/Q, = QA2/Q2 = 0.5. 

would intuitively expect. The above discussion reveals that the angular velocity in 
rotating flows plays a dual role in flow stabilities: the velocity gradient produces a 
shear effect while the velocity itself induces a centrifugal force field. The term x3 
contains the information on the surface tension and on the magnetic field. The surface 
tension always stabilizes non-axisymmetric perturbations as is well known. The 
azimuthal magnetic fields in both the inner and outer region always stabilize the flow 
in spite of the details of the magnetic profile. This characteristic is also true for 
arbitrary flows if only the perturbations in the azimuthal direction are permitted. 

To further illustrate the stability characteristics described by (41), we consider a 
special flow profile 

P O ( r )  = P23  a(r) = 5 2 2 ,  Q A ( r )  = ( B  < r < a). (42) 

All the quantities with numerical indices are constants. The solution, obtained by 
solving (39) for the present flow profile, is 

The secular relation for stability is 

(P1 +P2) o2 -2 [ (m-  1)  P1 a, + (m + 1 )  Pz 5 2 2 1  w 
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As previously predicted, we can immediately conclude that the sign of F, determines 
whether or not the force condition a t  the interface stabilizes the flow. For stability 
(oi = 0) the characteristic equation from (44) requires that 

- (m2- 1 )  PlPZ(Q1 -QA2 + (Pz - P A  [ (m-  1 )  P I  52: + (m+ 1) Pz 523 

As previously discussed, the first term in the above equation represents the shear 
effect generated by the angular velocity gradient at the interface, always destabilizing 
the flow. Because of the uniform rotation for r 2 R implying 8, = 0, no shear effect 
exists in the outer region. The second term is the effect of the density difference 
experienced in the centrifugal forces generated a t  the interface. Stabilizing effects 
correspond to  larger density in the outer region. The last term contains the 
information on the surface tension and on the azimuthal magnetic fields in the inner 
and outer region, all always stabilizing azimuthal perturbations. Figures 3( a, b,  c )  
show the stability domains for m = 2 ,  5 and 30 modes in the absence of surface 
tension. Both the destabilizing effect produced by the shear a t  the interface and the 
stabilizing effect induced by the azimuthal magnetic fields increase as the wavenumber 
becomes larger. For very large m, (45)  for zero surface tension reduces to 

The flow in the absence of the magnetic force is therefore always unstable except for 
uniform rotation where Q1 = 52,. 

Case 3 : the arbitrary mode 
For simplicity consider 52, = QAl = 0 in the inner region, and the solution for the 
perturbation velocity reduced from (26) is 

u1 = AN,  k I k ( k r ) .  (47) 

The dynamic interfacial condition expressed in terms of the perturbation velocities 
from (21) and (24) is 

( P o  r2(N2 - Ni) D* (:)) + (G) {( -2mr&(N52--~ 52,)) + ( K 2  + m2) Fc> = 0. 
R 

(48) 
For the outer region, when we consider 52, = WA = 0, the governing equation for 

stability is 

(49) 

Following the procedures used in the axisymmetric case, we can again conclude that 
the sign of F, determines the stability effect carried by the forces acting a t  the 
interface. In  the present case 

is positive-definite. The surface tension always stabilizes non-axisymmetric pertur- 
bations as is well known. The centrifugal-force term arising from the difference in the 
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angular velocity at the interface always stabilizes the flow. The stability condition 
is found to be 

where 
Y l + Y 2 + Y 3 + Y 4  2 0, (51) 

y1 = - a 1  k2(Wl- W)2Xdr-Sw-6,, 

yz = 2a k(W,-W)mOYdr L 
+2{  k W X d r 1  m52Ydr- ~~XdrJmkWm52Ydr} ,  R 

l u  
A N '  

$=-- 

S,= Xdr k2W2Xdr- 

a,= Ydr m2Q2Ydr- 

s s  
s s  

From the Schwarz inequality, it follows that 6, 2 0 and 6, 2 0 for all values of W 
and 52. Several stability characteristics can then be observed from (51) as follows. 

The quality y1 carries the shear effects in both axial and azimuthal directions, 
always destabilizing the flow. The first term in y1 is the axial shear generated by the 
velocity difference between the inner and the outer regions. The second term 6, and 
the third term 6, are respectively the shear effects produced by the axial- and 
azimuthal-velocity differences within the outer region. The corresponding terms can 
be found in the case for the axisymmetric mode and for the azimuthal mode. 

The quantity yz is the shear-effect interaction between the velocities in the axial 
and azimuthal directions. The first term in yz is the interaction between the inner 
and outer regions, while the second term in the interaction within the outer region. 
All the terms in y2 can be positive or negative, depending on the signs of the velocities 
and of the wavenumbers, and therefore can stabilize or destabilize the flow. Such 
dependence implies whether or not the axial or azimuthal shear reinforces each other 
and whether or not the direction of perturbations strengthens the resultant shear 
effect. 
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The first term in y3 is the effect of density variations at the interface and in the 
outer region in the centrifugal force field created by the rotation of the fluid. Densities 
increasing radially outwards stabilize the flow. The second term in y3 involves the 
integration of the Rayleigh-Synge discriminant over the outer region. The condition 
for centrifugally stable profiles, i.e. Qi 2 0, is the precondition for the sufficiency 
condition of stability for flows subject to perturbations in both the axial and 
azimuthal directions (Fung & Kurzweg 1975). Positive values of Qi stabilize the flow. 

The quantity y4 carries the information on the forces acting at the interface. The 
presence of the surface tension and of the axial magnetic field in the inner region 
always stabilize the flow. The term involving p, Qi in y4 is the centrifugal force created 
by the rotation of the outer region a t  the interface, always stabilizing the flow. 

To further illustrate the stability characteristics described by (51), we consider the 
following profile : 

Here p2, W2 and Q, are constant. The solution for the perturbation velocity obtained 
from (49) for the present flow profile is 

u, = B(kW,+mQ,-w) kK&(kr) .  (53) 

Equation (51) then has the form 

-P1 P 2 W  w, - W2) - mQ2Y 

The first term in (54) is the shear effect created by the velocity difference at the 
interface. The axial velocity difference always destabilizes the flow. However, such 
destabilization interacts with the radial shear effect generated by the rotation of the 
outer region. Whether or not the interaction reinforces the destabilization depends 
on the direction of the axial and azimuthal velocities and of the axial and azimuthal 
perturbations. Since KI&(K)/ I~(K) 2 0 and KK&(K)/K,(K) < 0, the second term in 
(54) is always positive and is contributed by the axial magnetic field in the inner 
region, the rotation of fluid in the outer region, and the surface tension a t  the 
interface. All these contributions stabilize the flow. It was the contribution from the 
unbalanced centrifugal force p, Q: neglected by Michalke & Timme (1967) in their 
analysis of inviscid instability of vortex-sheet flows with constant density. Such 
negligence led them to conclude that some of the perturbations which should have 
been stabilized by the unbalanced centrifugal forces at the vortex sheet were 
unstable. 

5.  Conclusions 
The interfacial conditions for a cylindrical vortex sheet or fluid layer with 

radius-dependent density, velocity and magnetic fields have been obtained for 
isentropic compressible flows subjected to arbitrary spatial and temporal disturbances. 
The conditions are valid for vortex flows with or without discontinuities. The 
derivation of the dynamic interfacial conditions shows that the deformation of the 
vortex sheet affects the flow in two ways: disturbing the total pressure field and 
perturbing the centrifugal force field created by the azimuthal components of the 
velocity and the magnetic flux. The latter seems to be straightforward but is easily 
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overlooked. Failure to consider such a perturbation to a stable centrifugal force a t  
the vortex sheet can lead to  the erroneous destabilization of certain modes corres- 
ponding to smaller axial and azimuthal wavenumbers. 

The present analysis has also demonstrated several characteristics of a general class 
of vortex flows. Unlike the velocity in the two-dimensional parallel flows, the rotation 
of vortex motions plays a dual role in flow stability: the angular-velocity gradient 
produces shear effects which always destabilize the flow while the angular velocity 
itself generates a centrifugal force field which can stabilize or destabilize the flow. 
The stabilization or destabilization depends on whether the force field is centrifugally 
stable or unstable. For flows of the vortex-sheet type, the centrifugal force arising 
from the discontinuities in the rotating velocity and the azimuthal magnetic field a t  
the vortex sheet has significant influence on flow stability. The resultant direction 
of the centrifugal force a t  the interface, dictated by the sign of F, in (23), determines 
whether such force stabilizes or destabilizes the flow. As shown in (24), the forces 
acting a t  both sides of the vortex sheet interact with the perturbation displacement 
of the deformed interface. Such an interaction will stabilize perturbations corres- 
ponding to smaller wavenumbers as shown in the examples in the present analysis. 
The azimuthal magnetic field always stabilizes azimuthal perturbations while the 
surface tension stabilizes all perturbations except for axisymmetric ones with 
long axial wavelengths. 
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